Chapter 8

NOBLE GASES

M.F.A. Dove

8.1	THE ELEMENTS	522
8.2	KRYPTON(II) AND XENON(II)	522
8.3	XENON(IV) AND (VI)	523
REFERENCES		524

8.1 THE ELEMENTS

The behaviour of supercritical xenon as a solvent has been investigated at pressures up to 225atm. With naphthalene as the solute: 1 this study is claimed to be the first to demonstrate that xenon exhibits enhanced solvent properties comparable to those of methane, ethene and carbon dioxide. The n.m.r. relaxation times of 131 xe (I = 3 /2) in a variety of solvents at room temperature have been measured by Stengle et al. 2 Relaxation in polar solvents is relatively rapid and the electrostatic model of Hertz provides a good semiquantitative picture of the interactions in such media.

Stein³ has attempted to repeat the experiments published by Avrorin et al in 1981 in which higher fluorides of radon as well as a water-soluble oxide, RnO_3 , were reported. He concludes that their interpretation did not take account of the tendency of trace amounts of $^{222}\mathrm{Rn}$ to be trapped in suspended solids. Thus he reports that not more than 0.2% Rn remained in solution after hydrolysis of $(\mathrm{RnF})_2\mathrm{NiF}_6$.

8.2 KRYPTON(II) AND XENON(II)

An improved synthesis of $\mathrm{KrF}^+\mathrm{MF}_6^-$, $\mathrm{M}=\mathrm{As}$ or Sb, and the existence of a $\mathrm{Kr}_2^{\mathrm{F}_3}^+$. BF_4^- . $\mathrm{n}(\mathrm{KrF}_2)$ adduct have been reported: 4 the reactivity of KrF^+ towards NF_3 , ClF_5 and BrF_5 were also examined

and compared with the reactivity of PtF $_6$. Addition reactions of Xe(OTeF $_5$) $_2$ with a number of mono-fluoro-olefins produce fluorocarbons with two OTeF $_5$ substituents. The reaction of HCN with Xe(OMF $_5$) $_2$, M = Se or Te, yields F $_5$ M-N=C=O, reaction (1), presumably via F $_5$ MOXeCN and F $_5$ MOCN. This route provides the

$$Xe(OMF_5)_2 + HCN \rightarrow HOMF_5 + F_5MNCO$$
 ...(1)

first synthesis of the selenium(VI) isocyanate. Fluorination of the -PF $_2$ ligand in ${\rm Ir}({\rm CO})\,{\rm Cl}_2\,({\rm PEt}_3)\,_2{\rm PF}_2$ by ${\rm XeF}_2$ in ${\rm CH}_2{\rm Cl}_2$ at 280K converts the complex to one containing the -PF $_4$ ligand. Dimethyl sulphide is fluorinated by ${\rm XeF}_2$ in non-acidic media under carefully controlled conditions to give a product best formulated as ${\rm Me}_2{\rm SCH}_2{\rm SMe}^+{\rm H}_n{\rm F}_{n+1}^-$. In the presence of an HF-sink, e.g. CsF, the sulphur containing product was $({\rm CH}_2{\rm F})\,{\rm SMe}$. However in liquid HF the cation ${\rm Me}_2{\rm SF}^+$ was formed at -23°C.

8.3 XENON(IV) AND (VI)

A series of mixed fluoro(pentafluoroorthotellurato) derivatives of the xenon compounds, XeF_4 , $XeOF_4$ and XeO_2F_2 , have been produced for the first time by Schumacher and Schrobilgen. They characterised the products by low temperature Raman and by n.m.r. spectroscopy. The new xenon(VI) fluorometallates (M = Sn or Pb)

have been isolated and characterised for the first time. ¹⁰ From the vibrational spectra the 4:1 compounds are formulated as $(Xe_2F_{11}^+)_2MF_6^{2-}$ and the 1:4 compounds as $XeF_5^+(M_4F_{17}^-)$.

REFERENCES

- V.J.Krukonis, M.A.McHugh and A.J.Seckner, J. Phys. Chem., 88(1984)2687.
- T.R.Stengle, N.V.Reo and K.L.Williamson, J. Phys. Chem., 88 (1984) 3225.
- L.Stein, Inorq. Chem., 23(1984)3670; V.V.Avrorin, R.N. Krasikova, V.D.Nefedov, and M.A.Toropova, Radiokhimiya, 23(1981)879.
- K.O. Christe, W.W. Wilson and R.D. Wilson, Inorg. Chem., 23(1984)2058.
- C.J. Schack and K.O. Christe, J. Fluorine Chem., 26(1984)19.
- P. Huppmann, G. Klöter, J. S. Thrasher, K. Seppelt and 6 D.D.DesMarteau, Inorg. Chem., 23(1984)2217.
- 7 E.A.V. Ebsworth, J.H. Holloway, N.J. Pilkington and D.W. H. Rankin, Angew. Chem., Int. Ed. Engl., 23(1984)630.

 A.M.Forster and A.J.Downs, J. Chem. Soc., Dalton Trans.,
- (1984)2827.
- G.A. Schumacher and G.J. Schrobilgen, Inorg. Chem., 23(1984)2923.
- 10 B.Zemva and A.Jesih, J. Fluorine Chem., 24(1984)281.